Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301674, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38284329

RESUMO

Double-atom site catalysts (DASs) have emerged as a recent trend in the oxygen reduction reaction (ORR), thereby modifying the intermediate adsorption energies and increasing the activity. However, the lack of an efficient dual atom site to improve activity and durability has limited these catalysts from widespread application. Herein, the nitrogen-coordinated iron and tin-based DASs (Fe-Sn-N/C) catalyst are synthesized for ORR. This catalyst has a high activity with ORR half-wave potentials (E1/2 ) of 0.92 V in alkaline, which is higher than those of the state-of-the-art Pt/C (E1/2  = 0.83 V), Fe-N/C (E1/2  = 0.83 V), and Sn-N/C (E1/2  = 0.77 V). Scanning electron transmission microscopy analysis confirmed the atomically distributed Fe and Sn sites on the N-doped carbon network. X-ray absorption spectroscopy analysis revealed the charge transfer between Fe and Sn. Both experimental and theoretical results indicate that the Sn with Fe-NC (Fe-Sn-N/C) induces charge redistribution, weakening the binding strength of oxygenated intermediates and leading to improved ORR activity. This study provides the synergistic effects of DASs catalysts and addresses the impacts of P-block elements on d-block transition metals in ORR.

2.
J Synchrotron Radiat ; 31(Pt 1): 195-201, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038695

RESUMO

The Photoelectron-Related Image and Nano-Spectroscopy (PRINS) endstation located at the Taiwan Photon Source beamline 27A2 houses a photoelectron momentum microscope capable of performing direct-space imaging, momentum-space imaging and photoemission spectroscopy with position sensitivity. Here, the performance of this microscope is demonstrated using two in-house photon sources - an Hg lamp and He(I) radiation - on a standard checkerboard-patterned specimen and an Au(111) single crystal, respectively. By analyzing the intensity profile of the edge of the Au patterns, the Rashba-splitting of the Au(111) Shockley surface state at 300 K, and the photoelectron intensity across the Fermi edge at 80 K, the spatial, momentum and energy resolution were estimated to be 50 nm, 0.0172 Å-1 and 26 meV, respectively. Additionally, it is shown that the band structures acquired in either constant energy contour mode or momentum-resolved photoemission spectroscopy mode were in close agreement.

3.
Nanoscale ; 15(48): 19735-19745, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38047470

RESUMO

Two interesting electronic transport properties including in-plane anisotropy and nonhomogeneous carrier distribution were observed in ReS2 nanoflakes. The electrical conductivity defined by the current parallel to the b-axis (‖b) is 32 times higher than that perpendicular to the b-axis (⊥b). Similar anisotropy was also observed in optoelectronic properties in which the ratio of responsivity ‖b to ⊥b reaches 20. In addition, conductivity and thermal activation energy with substantial thickness dependence were observed, which indicates a surface-dominant 2D transport in ReS2 nanoflakes. The presence of surface electron accumulation (SEA) in ReS2 has been confirmed by angle-resolved photoemission spectroscopy and scanning tunneling spectroscopy. The electron concentration (∼1019 cm-3) at the surface is over three orders of magnitude higher than that of the bulks. Sulfur vacancies which are sensitive to air molecules are suggested to be the major factor resulting in SEA and high conductivity in ReS2 nanostructures.

4.
Nanomaterials (Basel) ; 13(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570508

RESUMO

We reported the photoconduction properties of tungsten disulfide (WS2) nanoflakes obtained by the mechanical exfoliation method. The photocurrent measurements were carried out using a 532 nm laser source with different illumination powers. The results reveal a linear dependence of photocurrent on the excitation power, and the photoresponsivity shows an independent behavior at higher light intensities (400-4000 Wm-2). The WS2 photodetector exhibits superior performance with responsivity in the range of 36-73 AW-1 and a normalized gain in the range of 3.5-7.3 10-6 cm2V-1 at a lower bias voltage of 1 V. The admirable photoresponse at different light intensities suggests that WS2 nanostructures are of potential as a building block for novel optoelectronic device applications.

5.
Chem Sci ; 14(5): 1320-1328, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756319

RESUMO

We report the synthesis and characterization of a 2D semiconductive and photoconductive coordination polymer. [Zn(TPPB)(Cl2)]·H2O (1) (TPPB = N 1,N 1,N 4,N 4-tetrakis(4-(pyridin-4-yl)phenyl)benzene-1,4-diamine) consists of a TPPB redox-active linker with bis(triarylamine) as the core. It consists of two redox sites connected with a benzene ring as a bridge. Thus, this forms an extended conjugation pathway when the TPPB ligand is coordinated with the Zn2+ metal ions. The single crystal conductivity measurement revealed conductivity of 1 to be in the range of 0.83 to 1.9 S cm-1. Band structure analysis predicted that 1 is a semiconductor from the delocalization of electronic transport in the network. The computational calculations show the difference in charge distribution between holes and electrons, which led to spatial separation. This implies a long charge carrier lifetime as indicated by lifetime measurement. Incorporating a bis(triarylamine)-based redox-active linker could lead to a new semiconductive scaffold material with photocatalytic applications.

6.
Nanoscale Adv ; 4(22): 4886-4894, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381504

RESUMO

Photoconduction (PC) properties were investigated for ternary indium aluminium nitride (In x Al1-x N) nanorods (NRs) with different indium compositions (x) from 0.35 to 0.68, as grown by direct-current reactive magnetron sputter epitaxy. Cross-sectional scanning transmission electron microscopy (STEM) reveals single-crystal quality of the vertically aligned In x Al1-x N NRs. Single-rod photodetector devices with good ohmic contacts were fabricated using the focused-ion-beam technique (FIB), where the In-rich In0.68Al0.32N NR exhibits an optimal photocurrent responsivity of 1400 A W-1 and photoconductive gain of 3300. A transition from a positive photoresponse to a negative photoresponse was observed, while increasing the In composition x from 0.35 to 0.57. The negative PC was further enhanced by increasing x to 0.68. A model based on the coexistence and competition of deep electron trap states and recombination centers was proposed to explain the interesting composition-dependent PC in these ternary III-nitride 1D nanostructures.

7.
ACS Appl Mater Interfaces ; 14(10): 12423-12433, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254046

RESUMO

Photoconductivity, a crucial property, determines the potential of semiconductor materials for use in optoelectronic and photocatalytic device applications. The one-dimensional metal-organic nanotube semiconducting material [{Re(CO)3}6(bho)(phpy)6]n (MBT 1, where bho is benzene-1,2,3,4,5,6-hexaoate and phpy is 4-phenylpyridine) reported herein exhibits record photocurrent responses at a broad spectral range. MBT 1 is comprised of a unique nanotube structure that is composed of six rhenium sites, six 4-phenylpyridine ligands, and a benzene-1,2,3,4,5,6-hexaoate unit. The highly organized self-assembled molecular bamboo tube MBT 1 displays semiconducting characteristics with a low activation energy of 1.63 meV. The alternating current (AC) and direct current (DC) conductivities of pellet devices are approximately 10-4 S/cm. For a single-crystal device, DC conductivity was found to be 1.5 S/cm, an unprecedented 10 000 times higher. The bandgap of MBT 1 was determined to be 1.03 eV, consistent with the theoretically estimated value of 1.2 eV. Theoretical calculations suggest that the unique structural architecture of MBT 1 allows for effective charge transport, which is facilitated by the spatial separation of electrons and holes that MBT 1 contains. This also eliminates fast charge recombination. The findings are not only chemically and fundamentally important but also have great potential for applications in innovative nano-optoelectronics.

8.
Sensors (Basel) ; 21(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672142

RESUMO

Broadband photosensors have been widely studied in various kinds of materials. Experimental results have revealed strong wavelength-dependent photoresponses in all previous reports. This limits the potential application of broadband photosensors. Therefore, finding a wavelength-insensitive photosensor is imperative in this application. Photocurrent measurements were performed in Sb2Te3 flakes at various wavelengths ranging from visible to near IR light. The measured photocurrent change was insensitive to wavelengths from 300 to 1000 nm. The observed wavelength response deviation was lower than that in all previous reports. Our results show that the corresponding energies of these photocurrent peaks are consistent with the energy difference of the density of state peaks between conduction and valence bands. This suggests that the observed photocurrent originates from these band structure peak transitions under light illumination. Contrary to the most common explanation that observed broadband photocurrent carrier is mainly from the surface state in low-dimensional materials, our experimental result suggests that bulk state band structure is the main source of the observed photocurrent and dominates the broadband photocurrent.

9.
Nanotechnology ; 31(46): 465201, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-32845871

RESUMO

Photoconductivities (PCs) with high responsivity in two-dimensional (2D) diindium triselenide (In2Se3) nanostructures with α-phase hexagonal structure were studied. The In2Se3 nanosheet photodetectors fabricated by focused-ion beam technique exhibit broad spectral response with wavelength range from 300 nm to 1000 nm. The In2Se3 nanosheets achieve optimal responsivity of 720 A W-1 in near-infrared region (808 nm), and detectivity of 2.2 × 1012 Jones, which were higher than several 2D material photodetectors. The physical origins that result in high photoresponse in In2Se3 nanosheets such as carrier lifetime and mobility were also characterized by time-resolved PC and field-effect transistor measurements. The fast (hundred microseconds to milliseconds) and slow (seconds and longer) current rise or decay processes were both observed during the photoresponse. The narrowing (or relaxation) of depletion region and oxygen-sensitized photoconduction mechanism were suggested to be the causes of the efficient photoresponse in the In2Se3 nanostructure detectors. All these observations suggest that α-In2Se3 nanosheets could be a promising candidate for photosensitive material applications.

10.
ACS Appl Mater Interfaces ; 12(25): 28550-28560, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32463650

RESUMO

Plasmonic nanostructure/semiconductor nanohybrids offer many opportunities for emerging electronic and optoelectronic device applications because of their unique geometries in the nanometer scale and material properties. However, the development of a simple and scalable synthesis of plasmonic nanostructure/semiconductor nanohybrids is still lacking. Here, we report a direct synthesis of colloidal gold nanoparticle/graphene quantum dot (Au@GQD) nanohybrids under ambient conditions using microplasmas and their application as photoabsorbers for broad band photodetectors (PDs). Due to the unique AuNP core and graphene shell nanostructures in the synthesized Au@GQD nanohybrids, the plasmonic absorption of the AuNP core extends the usable spectral range of the photodetectors. It is demonstrated that the Au@GQD-based visible light photodetector simultaneously possesses an extraordinary photoresponsivity of ∼103 A/W, ultrahigh detectivity of 1013 Jones, and fast response time in the millisecond scale (65 ms rise time and 53 ms fall time). We suggest that the synergistic effect can be attributed to the strong fluorescence quenching in Au@GQD coupled with the two-dimensional graphene layer in the device. This work provides knowledge of tailoring the optical absorption in GQDs with plasmonic AuNPs and the corresponding photophysics for broad band response in PD-related devices.

11.
Mater Sci Eng C Mater Biol Appl ; 107: 110330, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761209

RESUMO

The present study focused on the development of electric stimuli drug release carrier based on transition metal dicgalcogenides. First, tungsten disulfide (WS2) was exfoliated and functionalized using thiol chemistry with various thiol-terminated ligands such as thioglycolic acid (TGA), mercaptosuccinic acid (MSA), and 2-ethanethiol (2ET). The exfoliated WS2 underwent non-covalent coating with an electrically conductive polypyrrole (PPy) for functionalization, of which MSA-WS2-PPy achieved the highest 5-FU (anticancer drug) loading. An electrically-stimulated drug release experiment showed that TGA-WS2-PPy achieved a higher drug release (90%) than MSA-WS2-PPy (70%) and 2ET-WS2-Ppy (35%). The TGA-WS2-PPy exhibited swelling/recombination between PPY and MSA-WS2 substrate under electrical stimulation, resulting in the highest 5-FU release. From the MTT assay result, there was no significant toxicity observed for TGA-WS2-PPy-FU on HaCaT cells, indicating the biocompatibility of TGA-WS2-PPy-FU in the absence of electrical stimulation. However, HaCaT cells died when incubated with TGA-WS2-PPy-FU under electrical stimulation. Finally, Raman mapping studies for TGA-WS2-PPy drug release in the skin of nude mice demonstrated that the carrier penetrated deeper into the skin of the mice while other systems failed to exhibit significant effects under electrical stimulation. The present study offers a novel approach in developing a non-invasive electrically-stimulated drug release system based on WS2 and an externally-controlled delivery model.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanocompostos/química , Polímeros/química , Pirróis/química , Pele/efeitos dos fármacos , Compostos de Tungstênio/química , Administração Cutânea , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Linhagem Celular , Dissulfetos/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Estimulação Elétrica , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Humanos , Queratinócitos/efeitos dos fármacos , Camundongos Endogâmicos ICR , Camundongos Nus , Nanocompostos/administração & dosagem , Análise Espectral Raman
12.
Nanoscale ; 11(19): 9716-9725, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31066385

RESUMO

A hybrid upconversion nanoparticle (UCNP)-graphene composite is demonstrated as a high-sensitivity and high-gain photodetector. The 980 nm multiphoton absorbing UCNPs are used as the photoabsorber, and optimized graphene is used as an efficient charge transporter. Although this device class is in its infancy, we show how critical engineering of the UCNPs, with a silica (SiO2) shell, helps to couple it optically with graphene to get a superior device. This initial report of UCNP-graphene optical coupling is expressed as fluorescence enhancement/quenching of the former in the presence of the latter. While the published literature relies mostly on fluorescence quenching in the UCNPs, our devices use both fluorescence quenching (using core UCNPs), and enhancement (using UCNP@SiO2) to significantly enhance the detector parameters. For example, the photoresponsivity of the core-UCNP device was ∼1.52 × 104 A W-1 which could be improved to ∼2.7 × 104 A W-1 (at 980 nm, power density of ∼31.84 µW cm-2, and under a 1.0 V bias) with the UCNP@SiO2 device. The responsivity, gain, and detectivity thus obtained are the highest reported so far for this class of composite photodetectors. The device could detect signals from domestic hand-held appliances such as laser pointers, cellphone flashlights, and air-conditioning remotes. This work will further the knowledge of device photophysics in this class of hybrids.

13.
Nat Commun ; 10(1): 1721, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979944

RESUMO

Designing highly conducting metal-organic frameworks (MOFs) is currently a subject of great interest for their potential applications in diverse areas encompassing energy storage and generation. Herein, a strategic design in which a metal-sulfur plane is integrated within a MOF to achieve high electrical conductivity, is successfully demonstrated. The MOF {[Cu2(6-Hmna)(6-mn)]·NH4}n (1, 6-Hmna = 6-mercaptonicotinic acid, 6-mn = 6-mercaptonicotinate), consisting of a two dimensional (-Cu-S-)n plane, is synthesized from the reaction of Cu(NO3)2, and 6,6'-dithiodinicotinic acid via the in situ cleavage of an S-S bond under hydrothermal conditions. A single crystal of the MOF is found to have a low activation energy (6 meV), small bandgap (1.34 eV) and a highest electrical conductivity (10.96 S cm-1) among MOFs for single crystal measurements. This approach provides an ideal roadmap for producing highly conductive MOFs with great potential for applications in batteries, thermoelectric, supercapacitors and related areas.

14.
Nanoscale Res Lett ; 13(1): 371, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30465297

RESUMO

The photocurrent was performed in topological insulator nanosheets with different conductances. The higher photocurrent is observed in the nanosheet with higher conductance. The responsivity is proportional to the nanosheet conductance over two orders. The responsivity is independent of the light power intensity in vacuum, but responsivity drastically decreases at low power intensity in air. The ratio of the responsivity in air to that in vacuum is negatively proportional to the the inverse of the light power intensity. These behaviors are understood as the statistical photocurrent in a system with blocked molecules. The time constant decreases as the thickness increases. A longer time constant is observed in lower atmosphere pressure.

15.
ACS Appl Mater Interfaces ; 10(6): 5740-5749, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29381044

RESUMO

A photodetector using a two-dimensional (2D) low-direct band gap indium selenide (InSe) nanostructure fabricated by the focused ion beam (FIB) technique has been investigated. The FIB-fabricated InSe photodetectors with a low contact resistance exhibit record high responsivity and detectivity to the ultraviolet and visible lights. The optimal responsivity and detectivity up to 1.8 × 107 A W-1 and 1.1 × 1015 Jones, respectively, are much higher than those of the other 2D material-based photoconductors and phototransistors. Moreover, the inherent photoconductivity (PC) quantified by the value of normalized gain has also been discussed and compared. By excluding the contribution of artificial parameters, the InSe nanoflakes exhibit an ultrahigh normalized gain of 3.2 cm2 V-1, which is several orders of magnitude higher than those of MoS2, GaS, and other layer material nanostructures. A high electron mobility at room temperature reaching 450 cm2 V-1 s-1 has been confirmed to be one of the major causes of the inherent superior PC in the InSe nanoflakes. The oxygen-sensitized PC mechanism that enhances carrier lifetime and carrier collection efficiency has also been proposed. This work demonstrates the devices fabricated by the FIB technique using InSe nanostructures for highly efficient broad-band optical sensing and light harvesting, which is critical for development of the 2D material-based ultrathin flexible optoelectronics.

16.
Sci Rep ; 7: 45413, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350014

RESUMO

The photocurrent was performed in the Sb2SeTe2 topological insulator at a wavelength of 532 nm. It exhibits extremely high performance that the responsivity and the photoconductive gain reach 2293 AW-1 and 5344 at 1 V. This high photoresponse is orders of magnitude higher than most reported values in topological insulators and two-dimensional transitional metal dichalcogenides. This finding suggests that the Sb2SeTe2 nanoflake has great potential for future optoelectronic device applications.

17.
ACS Appl Mater Interfaces ; 8(34): 22637-46, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27488185

RESUMO

The thickness-dependent surface states of MoS2 thin films grown by the chemical vapor deposition process on the SiO2-Si substrates are investigated by X-ray photoelectron spectroscopy. Raman and high-resolution transmission electron microscopy suggest the thicknesses of MoS2 films to be ranging from 3 to 10 layers. Both the core levels and valence band edges of MoS2 shift downward ∼0.2 eV as the film thickness increases, which can be ascribed to the Fermi level variations resulting from the surface states and bulk defects. Grainy features observed from the atomic force microscopy topographies, and sulfur-vacancy-induced defect states illustrated at the valence band spectra imply the generation of surface states that causes the downward band bending at the n-type MoS2 surface. Bulk defects in thick MoS2 may also influence the Fermi level oppositely compared to the surface states. When Au contacts with our MoS2 thin films, the Fermi level downshifts and the binding energy reduces due to the hole-doping characteristics of Au and easy charge transfer from the surface defect sites of MoS2. The shift of the onset potentials in hydrogen evolution reaction and the evolution of charge-transfer resistances extracted from the impedance measurement also indicate the Fermi level varies with MoS2 film thickness. The tunable Fermi level and the high chemical stability make our MoS2 a potential catalyst. The observed thickness-dependent properties can also be applied to other transition-metal dichalcogenides (TMDs), and facilitates the development in the low-dimensional electronic devices and catalysts.

18.
Nanoscale Res Lett ; 11(1): 124, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26935304

RESUMO

Photoconductivities in molybdenum disulfide (MoS2) layered nanostructures with two-hexagonal crystalline structure prepared by mechanical exfoliation were investigated. The photoconductor-type MoS2 nanoflakes exhibit remarkable photoresponse under the above bandgap excitation wavelength of 532 nm at different optical intensity. The photocurrent responsivity and photoconductive gain of nanoflakes can reach, respectively, 30 AW(-1) and 103 at the intensity of 50 Wm(-2), which are several orders of magnitude higher than those of their bulk counterparts. The vacuum-enhanced photocurrent and power-independent responsivity/gain indicate a surface-controlled photoconduction mechanism in the MoS2 nanomaterial.

19.
J Vis Exp ; (106): e53200, 2015 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-26710105

RESUMO

Layer semiconductors with easily processed two-dimensional (2D) structures exhibit indirect-to-direct bandgap transitions and superior transistor performance, which suggest a new direction for the development of next-generation ultrathin and flexible photonic and electronic devices. Enhanced luminescence quantum efficiency has been widely observed in these atomically thin 2D crystals. However, dimension effects beyond quantum confinement thicknesses or even at the micrometer scale are not expected and have rarely been observed. In this study, molybdenum diselenide (MoSe2) layer crystals with a thickness range of 6-2,700 nm were fabricated as two- or four-terminal devices. Ohmic contact formation was successfully achieved by the focused-ion beam (FIB) deposition method using platinum (Pt) as a contact metal. Layer crystals with various thicknesses were prepared through simple mechanical exfoliation by using dicing tape. Current-voltage curve measurements were performed to determine the conductivity value of the layer nanocrystals. In addition, high-resolution transmission electron microscopy, selected-area electron diffractometry, and energy-dispersive X-ray spectroscopy were used to characterize the interface of the metal-semiconductor contact of the FIB-fabricated MoSe2 devices. After applying the approaches, the substantial thickness-dependent electrical conductivity in a wide thickness range for the MoSe2-layer semiconductor was observed. The conductivity increased by over two orders of magnitude from 4.6 to 1,500 Ω(-) (1) cm(-) (1), with a decrease in the thickness from 2,700 to 6 nm. In addition, the temperature-dependent conductivity indicated that the thin MoSe2 multilayers exhibited considerably weak semiconducting behavior with activation energies of 3.5-8.5 meV, which are considerably smaller than those (36-38 meV) of the bulk. Probable surface-dominant transport properties and the presence of a high surface electron concentration in MoSe2 are proposed. Similar results can be obtained for other layer semiconductor materials such as MoS2 and WS2.


Assuntos
Molibdênio/química , Nanoestruturas/química , Compostos de Selênio/química , Semicondutores , Condutividade Elétrica , Eletricidade , Elétrons , Desenho de Equipamento
20.
Nanotechnology ; 25(41): 415706, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25249412

RESUMO

We report on the observation of the substantial thickness (t)-dependent electrical conductivity (σ) at a wide thickness range for an MoSe2 layer semiconductor. The conductivity increases for more than two orders of magnitude from 4.6 to 1500 Ω(-1) cm(-1) with a decrease in thickness from 2700 to 6 nm. The conductivity was found to follow a nearly linear relationship with the reciprocal thickness, i.e. σ ∝ 1/t. The temperature-dependent conductivity measurements also show that the MoSe2 multilayers have much lower activation energies at 3.5-8.5 meV than those (36-38 meV) of their bulk counterparts, indicating the different origins of the majority carrier. These results imply the presence of higher surface conductivity or carrier surface accumulation in this layer crystal. The fabrication of ohmic contacts for the MoSe2 layer nanocrystals using the focused-ion beam (FIB) technique was also demonstrated. This study provides a new understanding which is crucial for the development of flexible electronic devices and transparent conducting materials using ultrathin dichalcogenide layer materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...